I Semester									
Course Code:	Category	Hours / Week			Credits	Maximum Marks		'ks	
A5BS09	BSC	L	T	Ρ	С	CIA	SEE	Total	
		3	1	0	4	30	70	100	
COURSE OBJECTIVES:									
 The course should enable the students to: 1. Describe the chemical reaction and phase transformation in materials by using modern thermodynamic models 2. Learn the fundamentals of transport properties of materials 3.Describe the interactions of light with materials which results in colour and the temperature dependence of magnetic susceptibility 4. Learn the basic principles of optical fiber and its communication system 5. Understand the development of Nano technology and synthesis of Nano materials by using different techniques 									
UNIT-I	THE STRUCTURE PHASES	THE STRUCTURE OF MATERIALS & THERMODYNAMICS OF CONDENSED PHASES							
salt structure Thermodyna Gibbs rule, C UNIT-II Transport P Molecular O Dependence Band theory Fermi-level, H	, Diamond structure, s amics of Condensed u- Ni phase diagram, TRANSPORT PRO roperties of Material rigins of Viscosity, of alloy Viscosity. of solids: Free electr (ronig-Penny model, E	tructure of Phases : In Eutectic sy DPERTIE s: Introduct Temperatur on theory, E-K diagrar	SiO4. ntrodu /stems S OF ction - ure De Origir m.	ction s, Iron MA ⁻ Mom epen	- Thermoc n-Iron carbi FERIALS8 hentum Tran dence of energy band	lynamics of M de (Fe-Fe3C) BAND THE hsport proper Pure MetalV I formation in	letals and Al equilibrium EORY OF S ties of Mate iscosity, Co solids, Estin	loys, - diagram. SOLIDS rials, -The omposition nation of	
UNIT-III	PROPERTI	ES OF M	ATER		S				
Electrical on	d Optical properties	Conduction	on So	mio	onductivity	Electrical Ca	aduction in L	onic	
Ceramics.Re Light interact	flection, Refraction, Al ion with solids, EMR, a	osorption a atomic and	and tra	insmi ronic	ission. Opa interaction.	city and Trans	slucency in i	nsulators.	
Magnetic pro magnetic beh applications.	operties – Introduction navior, Hysteresis curv	n, Types of e, Soft and	f magr d Hard	netic I maę	materials, i gnetic mate	nfluence of te rials, Magneti	mperature o c storage, F	n errite	
UNIT-IV	OPTO ELE	PTO ELECTRONIC DEVICES AND OPTICAL FIBERS							
Optoelectronic devices: Introduction to Semiconductors, PN Junction Diode, V-I characteristics and applications. LED - Construction, working and applications. Solar cells- working and its applications. Efficiency issues of Solar cell, PIN diode characteristics.									
Fiber Optics SI and GI fit block diagrar	: Structure of fibers, I pers- R.I profiles. Sin n. Fiber optic sensors	Principle of gle and M – Basic p	f fiber Iultimo rincipl	(TIR de fi e, wo), Acceptar ibers-SMSI, orking of Pr	nce angle and MMSI, MMC essure and T	I NA. Types GI. OFC System Cemperature	of fibers- stem with Sensors.	

ENGINEERING PHYSICS

Applications of fibers in different fields.

UNIT-V INTRODUCTION TO ENGINEERED MATERIALS

Synthesis of Nano materials: Introduction to nano particles, nano scale, Surface to volume ratio and quantum confinement. Techniques for synthesis of nano materials-Top Down and Bottom Up methods– Sol gel, CVD methods and Photolithography.

Characterization of Nanomaterials: Imaging methods – SEM, TEM and STM. Applications of Nano materials in engineering and Biomedical fields and other fields.

Text Books:

- 1. P.K Palanisamy, Engineering Physics, Sitech Publications, 2013, IVthEdn.
- 2. Material science and metallurgy by pakkirappa.

Reference Books:

- 1. Engineering Physics by P.K.Pandey. S Chaturvedi-Cengage Learning.
- 2. An Introduction to material science and engineering by Brian S. Mitchell.

Course Outcomes:

The student will able to:

- 1. **Analyze** the bonding scheme and its physical properties of a given material
- 2. Evaluate the dimensionality, rates of a nucleation and growth process from kinetic data
- 3. **Evaluate** the curie and Neel temperature of a given substance.

4. **Justify** how the graded index optical fibre is more efficient than step index optical fiber in fiber optic communication system

5. Recommend appropriate synthesis method and explain the characterization techniques.